Reference Sheet for the QualityCore™ Algebra II End-of-Course Assessment

Equations of a Line

Standard Form Ax + By = C A, B, and C are constants with A and B not

Slope-Intercept Form y = mx + b both equal to zero.

 $y = mx + b (x_1, y_1) is a point.$

Point-Slope Form $y - y_1 = m(x - x_1)$ m = slope b = y-intercept

Quadratics

Standard Form of a $ax^2 + bx + c = 0$ a, b, and c are constants, where $a \ne 0$. Quadratic Equation

Quadratic Formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Conic Sections

Circle $(x - h)^2 + (y - k)^2 = r^2$ center (h,k) r = radius

Parabola $y = a(x - h)^2 + k$ axis of symmetry x = h vertex (h,k) directrix $y = k - \frac{1}{4a}$ focus $\left(h, k + \frac{1}{4a}\right)$

Parabola $x = a(y - k)^2 + h$ axis of symmetry y = k vertex (h,k) directrix $x = h - \frac{1}{4a}$ focus $(h + \frac{1}{4a}, k)$

Ellipse $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ foci $(h \pm c, k)$ where $c^2 = a^2 - b^2$, center (h,k)

Ellipse $\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$ foci $(h, k \pm c)$ where $c^2 = a^2 - b^2$, center (h,k)

Hyperbola $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ foci $(h \pm c, k)$ where $c^2 = a^2 + b^2$, center (h,k)

Hyperbola $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$ foci $(h, k \pm c)$ where $c^2 = a^2 + b^2$, center (h,k)

Lines and Points

Slope $m = \frac{y_2 - y_1}{x_2 - x_1}$ (x_1, y_1) and (x_2, y_2) are 2 points.

Midpoint $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ M = midpoint d = distance

Distance $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Miscellaneous

Simple Interest
$$I = prt$$
 $r = \text{rate}$ $t = \text{time}$

Compound Interest
$$A = p \left(1 + \frac{r}{n}\right)^{nt}$$
 $I = \text{interest}$ $p = \text{principal}$

Pythagorean Theorem
$$a^2 + b^2 = c^2$$
 a and $b = legs$ of right triangle $c = hypotenuse$

Laws of Sines and Cosines

Law of Sines
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Law of Cosines
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Sequences, Series, and Counting

Arithmetic Sequence
$$a_n = a_1 + (n-1)d$$
 $a_n = n^{th}$ term

Arithmetic Series
$$s_n = \frac{n}{2}(a_1 + a_n)$$
 $n = \text{number of the term}$ $d = \text{common difference}$

Geometric Sequence
$$a_n = a_1(r^{n-1})$$
 $s_n = \text{sum of the first } n \text{ terms}$

Geometric Series
$$s_n = \frac{a_1 - a_1 r^n}{1 - r}$$
 where $r \neq 1$ $r = \text{common ratio}$ $k = \text{number of objects in the set}$

Combinations
$${}_{k}C_{m} = C(k,m) = \frac{k!}{(k-m)! \ m!}$$
 $m = \text{number of objects selected}$

Permutations
$${}_{k}P_{m} = P(k,m) = \frac{k!}{(k-m)!}$$

Circumference, Area, and Volume

Triangle
$$A = \frac{1}{2}bh$$
 $A = \text{area}$

Parallelogram
$$A = bh$$
 $b = base$ $h = height$

Trapezoid
$$A = \frac{1}{2}(b_1 + b_2)h$$
 $r = \text{radius}$ $C = \text{circumference}$

Circle
$$A = \pi r^2$$
 $d = \text{diameter}$ $C = \pi d$ $V = \text{volume}$

$$V = \text{volume}$$
General Prism
$$V = Bh$$

$$B = \text{area of base}$$

General Prism
$$V = Bn$$
 $D = area of base}$

$$\pi \approx 3.14$$

Right Circular Cylinder
$$V = \pi r^2 h$$

Pyramid
$$V = \frac{1}{3}Bh$$

Right Circular Cone
$$V = \frac{1}{3}\pi r^2 h$$

Sphere $V = \frac{4}{3}\pi r^3$