	See also Pre-Algebra, Alge	abra I & II, Geometry, Precal Sheets	ocutecalcu	Calculus Sheet 1
2 points!	Difference Quotient, Avg Rate of Change	$Q = \frac{f(a+h) - f(a)}{h}$ $A(x) = \frac{f(b) - f(a)}{b - a}$	SAME. Used to calcluate the slope of the secant line between two points on a graph of function f.	The slope of a secant line going through 2 points on the curve , averaging a range of values. This is con- trasting with the <i>Instantaneous Rate of Change which</i> <i>is the slope of the tangent line touching at <u>one point</u>, evaluating at a single, isolated moment on the curve.</i>
1 point!	Instantaneous Rate of Change	Same as derivative ! Same as tangent line slope ! f'(x) at a point, x	It is the change in rate at a particular instant, and is the derivative , or tangent line slope	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	Constant Rule	f(x) = c f'(x) = 0	The derivative of a constant = ZERO	The derivative of any constant that is being added or subtracted = 0. $y = x^2 - 2$ If the constant is being MULTIPLIED or DIVIDED, this rule does NOT APPLY. $y' = \frac{d}{dx} x^2 - \frac{d}{dx} 2$ See Constant Rule Multiple. $y' = 2x$
	Power Rule	$f(x) = x^{n}$ $f'(x) = n \bullet x^{n-1}$	Multiply the variable's exponent n by the func- tion (moves to front) and subtract 1 from the exponent n .	$y = x^{3} \qquad y = 4x^{5} \qquad y = 2x^{3} - 6x^{2} + 3$ $y' = 3 \cdot x^{3-1} \qquad y' = 5 \cdot 4x^{5-1} \qquad y' = 3 \cdot 2x^{3-1} - 2 \cdot 6x^{2-1} + 0$ $y' = 3x^{2} \qquad y' = 20x^{4} \qquad y' = 6x^{2} - 12x$
	Sum Rule	$\frac{d}{dx}f(x) + g(x)$ $\frac{d}{dx}f(x) + \frac{d}{dx}g(x)$	The derivative of a sum of functions is equal to the sum of their individual derivatives.	$y = 2x^{3} + 6x^{2} + 3$ $y' = \frac{d}{dx} 2x^{3} + \frac{d}{dx} 6x^{2} + \frac{d}{dx} 3$ $y' = 3 \cdot 2x^{3-1} + 2 \cdot 6x^{2-1} + 0$ $y' = 6x^{2} + 12x$
	Difference Rule	$\frac{d}{dx} f(x) - g(x)$ $\frac{d}{dx} f(x) - \frac{d}{dx} g(x)$	The derivative of a differ- ence of functions is equal to the difference of their individual derivatives.	$y = 2x^{3} - bx^{2} - 3$ $y' = \frac{d}{dx} 2x^{3} - \frac{d}{dx} bx^{2} - \frac{d}{dx} 3$ $y' = 3 \cdot 2x^{3-1} 2 \cdot 6x^{2-1} D$ $y' = bx^{2} - 12x$
	Constant Rule Multiple	$f(x) = a \bullet g(x)$ $f'(x) = a \bullet \frac{d}{dx} g(x)$	The derivative of a constant multipled by a function is equal to the constant multi- plied by the derivative of the function. The constant goes to the front and hangs out.	$y' = 8 \cdot \frac{d}{dx} \times^{5} \qquad y' = 5 \cdot \frac{d}{dx} \times^{3} + 2 \cdot \frac{d}{dx} \times^{2} - 6 \cdot \frac{d}{dx}$ $y' = 8 \cdot 5 \times^{4} \qquad y' = 5 \cdot 3 \times^{2} + 2 \cdot 2 \times - 6 \cdot 1$
	Product Rule	$a(x) = f(x) \bullet g(x)$ a'(x) = f'g + g'f	The derivative of a product of functions is equal to: $f'(x) \bullet g(x) + g'(x) \bullet f(x)$	$y = (x^{2} + 2)(3x^{3} - 5x) + f(x) = x^{2} + 2 + 2 + 2 = (x) = 3x^{3} - 5x$ $f'(x) = 2x + 0 + 9'(x) = 9x^{2} - 5$ $= 2x \cdot (3x^{3} - 5x) + (9x^{2} - 5)(x^{2} + 2)$ $= 15x^{4} + 3x^{2} - 10$
	Quotient Rule	$a(x) = \frac{f(x)}{g(x)}$ $a'(x) = \frac{f'g - g'f}{g^2}$	The derivative of a quotient of functions is equal to: f'(x) • g(x) - g'(x) • f(x) all divided by g(x) ²	$y = \frac{5 x^{2}}{4x + 3}$ $f(x) = 5 x^{2} g(x) = 4x + 3$ $f'(x) = 10x g'(x) = 4$ $y' = \frac{f' \cdot g}{10x \cdot (4x + 3) - 4 \cdot (5x^{2})}$ $y' = \frac{20x^{2} + 30x}{(4x + 3)^{2}}$ $y' = \frac{20x^{2} + 30x}{(4x + 3)^{2}}$
	Chain Rule	a(x) = f(g(x)) a'(x) = f'(g(x)) • g'(x)	When taking the derivative of a composite function, first take the derivative of the outer function f(x) then multiply times the derivative of the inner function, g(x)	$y = \sin^{3} x \rightarrow y = (\sin x)^{3} \qquad y = \cos(5x^{2})$ $y' = 3(\sin x)^{3-1} \cdot \frac{d}{dx}(\sin x) \qquad y' = -\sin(5x^{2}) \cdot \frac{d}{dx}5x^{2}$ $y' = -\sin(5x^{2}) \cdot 10x$ $y' = -10x \sin(5x^{2})$

Tutoring in Pre-Algebra, Algebra I & II, Geometry, Precal, Calculus - DM @CuteCalculus

CuteCalculus.com

<u>Ocuted</u>	aculus	CuteCalculus.com
Inverse Function Theorem	Dx Trig Functions	Definition of Derivative
1. Find the inverse of $g(x)$ by switching x and y and solving for y. The inverse $g^{-1}(x)$ is our f(x).	d	$f'(x)=\lim_{x\to 0} \frac{f(x+h) - f(x)}{h}$
$G'(\mathbf{x}) = \underline{ }$	$\frac{d}{dx}$ for all	h
f'(g(x)) = f'(x) 3. Plug in the original g(x) function into the new	sin(x) = cos(x)	L'Hopital's Rule
f'(x) as in the formula, $1/f'(g(x))$ and simplify.		$\lim_{x \to 0} \frac{f(x)}{f(x)} = \lim_{x \to 0} \frac{f'(x)}{f'(x)}$
Limits Remember: slope of tangent line and derivative are the SAME THING	$\cos(x) = -\sin(x)$	x→a g(x) x→a g'(x)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\tan(x) = \sec^2(x)$	Derivatives DO NOT EXIST
f'(x) Calculus is the study of limits. When you see limit, think	$\cot(x) = -\csc^2(x)$	on corners, discontinuities (hole, jump) or vertical
"approaching." So if there is a hole or discontinuity in the graph, you can "approach" from either side of the discontinuity	sec(x) = sec(x)tan(x)	tangents, basically if you
and see what value the function is getting closer and closer to.	$\csc(x) = -\csc(x)\cot(x)$	cannot draw a tangent line.
Derivatives of Slope equation	Derivatives of	
Inverse Functions $m = \frac{y_2 - y_1}{x_2 - x_1}$	Log Functions	
	d for all	
$\sin^{-1} x = \frac{1}{\sqrt{1 - (x)^2}}$ $\sec^{-1} x = \frac{1}{ x \sqrt{(x)^2 - 1}}$ Point Slope Form y - y ₁ = m(x - x ₁)	dx lor all	
Slope Intercept Form	$a^{x} = a^{x} \ln(a)$	n x = <u>1</u> , x ≠ 0
$\cos^{-1} x = \frac{-1}{\sqrt{1 - (x)^2}}$ $\csc^{-1} x = \frac{-1}{ x \sqrt{(x)^2 - 1}}$ $y = mx + b$		Х
$\sqrt{1} - (x)^2$ $ x \sqrt{(x)^2} - 1$ Factoring	$e^{x} = e^{x}$	1
$a^2-b^2 = (a+b)(a-b)$		$og_a(x) = \frac{1}{x \ln a}, x > 0$
$\tan^{-1} x = \frac{1}{1 + (x)^2}$ $\cot^{-1} x = \frac{-1}{1 + (x)^2}$ $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$ $a^3 + b^3 = (a-b)(a^2 - ab + b^2)$	$\ln(x) = \frac{1}{x}, x > 0$	x In a
1 + (x) $1 + (x)$ $a + D - (a + D)(a - a D + D))$	Х	
Implicit Differentiation solve for y' or <u>dy</u> This allows you to find the dx	Linear Approximation	L(x) = f(a) + f'(a)(x - a)
	Used to approximate the	
to x without having to $b \times + 59 = 12$	particular point, a.	f(x)= sin²x, a=0
solve the given equation $2 \cdot b \times x^{2-1} + 2 \cdot 3 y^{2-1} \frac{dy}{dx} = 0$ for y.	1) Find f(a)	L(0) = f(0) + f'(0)(x - 0)
Each time you differentiate $12 \times + 6 9 \frac{d y}{d x} = 0$	2) Find f'(a)	
y, multiply the derivative _12 x _ 12 x	3) Plug in to L(x)	$f(0) = \sin^2 0 = 0$
by dy/dx or y' (these are the same thing, "the deriv- $by \frac{dy}{dx} = -12x$		
ative of y"), then solve the 6y 6y equation for y'. DONE.	f'(x)=2sinxcosx	f'(0)=2
$\frac{d y}{d x} = -\frac{2 x}{y}$		L(0) = 0 + 0(x - 0) = 0
Mean Value Theorem		
	Increasing/Decreasing	-
The slope of the tangent line (same as $f'(c)$) at c is the same as the secant slope between $f(a)$ and $f(b)$. At some point, the in-	a change in direction (moun-	$y = x^{2} + \frac{2}{x}$ over [1, 4]
stantaneous change (tangent line at c) will be the same as the average change (slope of secant line between a and b).	tain or valley). The CRITICAL POINT is located at the "ver-	$y' = 2x + 2 \cdot -1x^{-2} = 2x - \frac{2}{x^2}$
The slope of the	tex" of the change of direc-	$2x - \frac{2}{x^2} = 0$ $f(1) = 3$
tangent line at c and the slope of	tion, where the slope of the tangent line = 0. To find crit-	$x^2 \cdot 2x = \frac{2}{x^2} \cdot x^2$ always check ENDPOINTS!
the secant line	ical points, find the deriva- tive of the function, then set	$\begin{bmatrix} 3 \\ 1 \end{bmatrix}$
a c c c b a c b from a to b are the	i <u>t = 0 and solve</u> . Then <u>plug</u>	$x = 1 + \frac{f(4) = 16 + \frac{1}{2}}{f(4) = 16.5}$
	i <u>n this x value to the original</u>	
To find values of c where the tangent and secant are the same,	function to find the location	Y
same, or parallel.	<u>function</u> to find the location of the change of direction. Bigger = max, Smaller = min	Absolute maximum x=4, y=16.5 Absolute minimum x=1, y=3

The slope of the tangent line (same as f'(c)) at c is the same as the secant slope between f(a) and f(b). At some point, the instantaneous change (tangent line at c) will be the same as the average change (slope of secant line between a and b).



