

PHYS1205: Integrated Physics

University of Newcastle

1 1D Motion

Vector – A measurement with both magnitude and direction (e.g. Displacement)

Scalar – A measurement with only magnitude (e.g. distance)

Average Velocity

 $v_{avg} = \frac{\Delta x}{\Delta t}$

Instantaneous Velocity

 $v_{inst} = \frac{dx}{dt}$

Average Acceleration

$$a_{avg} = \frac{\Delta v}{\Delta t}$$

Instantaneous Acceleration

$$a_{inst} = \frac{dx}{dt}$$

Final Velocity

$$v_{xf} = v_{xi} + a_x t$$

Final Displacement with Avg. Velocity

$$x_f = x_i + \frac{1}{2}(v_{xi} + v_{xf})t$$

Final Displacement with Velocity and Acceleration

$$x_f = x_i + v_{xi}t + \frac{1}{2}a_xt^2$$

Final Velocity without Time

$$v_{xf}^2 = v_{xi}^2 + 2a_x(x_f - x_i)$$

Objects in Freefall – Acceleration is –g (9.8m/s²)

2 Vectors and 2D Motion

Vector Addition – Tip to Tail

Vector Subtraction – From the negative to the positive, or add the negative $(\vec{A} - \vec{B} = \vec{A} + (-\vec{B}))$

Vector Multiplication/Division by a Scalar – Only magnitude is multiplied or divided. Direction is reversed for negative scalars.

Vector Components

• Length

$$\left|\vec{A}\right| = \sqrt{\vec{A}_x^2 + \vec{A}_y^2}$$

• Direction

$$\theta = \tan^{-1} \frac{\vec{A}_y}{\vec{A}_x}$$

Unit Vectors:

$$\vec{A} = \vec{A}_{\rm x}\hat{\iota} + \vec{A}_{\rm y}\hat{j}$$

Projectile Motion

• Position

$$\vec{r_f} = \vec{r_l} + \vec{v_l}t + \frac{1}{2}\vec{g}t^2$$

- Initial Horizontal Velocity $\overrightarrow{v_{xy}} = v_i \cos \theta$
- Initial Vertical Velocity $\overrightarrow{v_{vi}} = v_i \sin \theta$

spoonfeed

Uniform Circular Motion

• Centripetal Acceleration

 $a_r = \frac{v^2}{r}$

Overall Acceleration

 $|a| = \sqrt{a_r^2 + a_t^2}$

Period

 $T = \frac{2\pi r}{v}$

Relative Velocity

 $\overrightarrow{r_{PA}} = \overrightarrow{r_{PB}} + \overrightarrow{v_{BA}}t$

3 Force and Motion

Newton's 1st Law - In the absence of external forces, when viewed from an inertial reference frame, an object at rest will remain at rest and an object in motion continues in motion with a constant velocity

Newton's 2nd Law - Net Force is the product of Mass and Acceleration

 $\Sigma F = ma$

Newton's 3rd Law - If two objects interact, the force that object one is exerting on object 2 is equal and opposite to that object two is exerting on object one

$$\overrightarrow{F_{12}} = -\overrightarrow{F_{21}}$$

Equilibrium

 $\Sigma F = 0$

Friction

Kinetic Friction

Static Friction

 $F \leq \mu_s N$

 $F = \mu_{\nu} N$

Circular Motion Dynamics

 $F = ma_r = m\frac{v^2}{r}$

4 Work, Energy and Power

Scalar/Dot Product

 $\vec{A} \cdot \vec{B} = ABcos\theta$

Work

• Same Direction as Displacement

 $W=F\Delta r$

• Different Direction to Displacement

 $W=F\Delta rcos\theta$

• Work by Varying Force

$$W_{net} = \int_{x_i}^{x_f} \sum F_x \, dx$$

Hooke's Law

 $F_s = -kx$

Kinetic Energy

$$KE = \frac{1}{2}mv^2$$

Work-Kinetic Energy Theorem

 $\Sigma W = \Delta K E$

Potential Energy

Gravitational

 $U = mg \Delta y$

• Elastic

$$U = \frac{1}{2}kx^2$$

Conservative Force - Work done is independent of the path taken by an object (e.g. Gravity)

Non-conservative Force - Work done dependent o the motion of the object (e.g. Friction)

Conservation of Energy

• Mechanical Energy

 $E_{mech} = KE + U$

• Total Energy

$$E_{tot} = KE + U + E_{int}$$

Non-Conservative Force Absent

 $\Delta E_{mech} = 0$

Non-Conservative Force Present

 $\Delta E_{tot} = 0$

Power

 $\overline{\varphi} = \frac{dW}{dt}$

5 Momentum

Momentum

 $\vec{p} = m\vec{v}$

Impulse

• Definition

 $I = \Delta p$

• For Constant Force

I = Ft

• For Non-Constant Force

$$\vec{I} = \int_{t_i}^{t_f} \vec{F}.\,dt$$

Collisions

• Conservation of Momentum (All Collisions)

 $p_i = p_f$

- Conservation of KE (Elastic Collisions) $KE_i = KE_f$
- Perfectly Inelastic $m_1 \overrightarrow{v_{1\iota}} + m_2 \overrightarrow{v_{2\iota}} = (m_1 + m_2) \overrightarrow{v_f}$
- Perfectly Elastic
 $$\begin{split} m_1 \overrightarrow{v_{1i}} + m_2 \overrightarrow{v_{2i}} &= m_1 \overrightarrow{v_{1f}} + m_2 \overrightarrow{v_{2f}} \\ \frac{1}{2} m_1 \overrightarrow{v_{1i}} + \frac{1}{2} m_2 \overrightarrow{v_{2i}} &= \frac{1}{2} m_1 \overrightarrow{v_{1f}} + \frac{1}{2} m_2 \overrightarrow{v_{2f}} \end{split}$$
- 6 Rotation

 $s = r\theta$

Translational Velocity

 $v = \omega r$

Translational Acceleration

 $a = \alpha r$

Average Angular Velocity

 $\omega_{avg} = \frac{\Delta\theta}{\Delta t}$

Instantaneous Angular Velocity

 $\omega_{inst} = \frac{d\theta}{dt}$

Instantaneous Angular Acceleration

 $\alpha_{inst} = \frac{d\omega}{dt}$

Final Angular Velocity

$$\omega_f = \omega_i + \alpha t$$

Final Angular Displacement

$$\theta_f = \theta_i + \omega t + \alpha t^2$$

Final Angular Velocity without Time

$$\omega_f^2 = \omega_i^2 + 2\alpha(\theta_f - \theta_i)$$

Final Angular Displacement with Avg. Velocity

$$\theta_f = \theta_i + \frac{1}{2}(\omega_i + \omega_f)t$$

Kinetic Energy of Rotation

$$K_r = \frac{\omega^2}{2} \sum m_i r_i^2$$

Moment of Inertia

• General

$$I = \int \rho r^2 \, dV$$

• Sphere

$$I = \frac{2}{5}mr^2$$

• Cylinder

 $I = \frac{1}{2}mr^2$

• Disk

 $I = mr^2$

Parallel Axis Theorem

 $I = I_{CM} \times MD^2$

Torque

• Using Radius

 $\tau = rFsin\phi$

• Using Perpendicular Distance

 $\tau = Fd$

• Net Torque

 $\Sigma \tau = I \alpha$

and

 $E_0 = mc^2$

Angular Momentum

Angular Momentum

 $L = I\omega$

• The Conservation of Momentum

 $L_f = L_i$

7 Waves, Oscillations and SHM

Wave Number

 $k = \frac{2\pi}{\lambda}$

Wave Equation

$$y(x,t) = Asin(kx - \omega t + \phi)$$

$$v = \sqrt{\frac{T}{\mu}}$$

Simple Harmonic Motion

General Equation

 $x(t) = Acos(\omega t + \phi)$

Acceleration

$$a_x = -\omega^2 x$$

Angular Frequency

$$\omega = \sqrt{\frac{k}{m}}$$

Period

•

$$T = \frac{2\pi}{\omega}$$

• Frequency

$$f = \frac{\omega}{2\pi} = \frac{1}{T}$$

Energy

$$E_{mech} = \frac{1}{2}kA^2$$

Velocity

٠

$$v = \pm \omega \sqrt{A^2 - x^2}$$

- SHM and Circular Motion Uses SHM formulae for each direction of movement
- SHM and the Pendulum o Period

$$T = 2\pi \sqrt{\frac{L}{g}}$$

• Physical Pendulum

$$T = 2\pi \sqrt{\frac{I}{dmg}}$$

8 Sound and EM Waves

Bulk Modulus

$$B = -\frac{\Delta P}{\Delta V/V}$$

Sound Wave Displacement

 $s(x,t) = s_{max} \cos\left(kx - \omega t\right)$

Sound Wave Pressure

• Including Bulk Modulus

$$\Delta P = Bs_{max}\sin\left(kx - \omega t\right)$$

• Without Bulk Modulus

$$\Delta P_{max} = \rho v \omega s_{max}$$

Density

 $\rho = \frac{m}{V}$

Speed of Sound

• Formula

 $\nu = \sqrt{\frac{B}{\rho}}$

• Dependence on Temperature

 $v = 331 \sqrt{1 + \frac{T_c}{273}}$

EM Waves

• Electrical Component

$$E = E_m \sin\left(kx - \omega t\right)$$

Magnetic Component

$$B = B_m \sin\left(kx - \omega t\right)$$

Intensity of a Sound Wave

• Per Unit Area

$$I = \frac{(\Delta P_{max})^2}{2\rho\nu}$$

• In Three Dimensions

Ι

$$\equiv \frac{Power_{avg}}{4\pi r^2}$$

Sound Levels in Decibels

$$\beta = 10 \log \left(\frac{I}{I_0}\right)$$

Doppler Effect

$$f' = \left(\frac{v + v_0}{v - v_s}\right) f$$

Reflection of a Pulse

- When a pulse hits a fixed boundary, reflection is inverted
- When a pulse hits a free boundary, reflection is not inverted
- When a pulse moves from a light to a heavy string the reflected pulse is inverted
- When a pulse moves from a heavy to a light string, the reflection is not inverted

Superposition

$$y = 2Asin\left(kx - \omega t + \frac{\phi}{2}\right)\cos\left(\frac{\phi}{2}\right)$$

Interference

 $\frac{path \, difference}{\lambda} \times 2\pi = phase \, difference$

Standing Waves on a String

• Formula

 $y = 2Asin(kx)\cos\left(\omega t\right)$

• Amplitude

$$amp = 2Asin(kx)$$

Nodes

$$x = \frac{n\lambda}{2} \ (where \ n = 0, 1, 2 \dots)$$

• Antinodes

$$x = \frac{n\lambda}{4} \text{ where } n = 1, 3, 5 \dots)$$

Boundary Conditions on a String

$$f_n = \frac{n}{2L} \sqrt{\frac{T}{\mu}}$$

Standing Waves in an Air Column

Closed Pipe

$$f_n = \frac{n\nu}{4L} \ (where \ n = 1, 3, 5 \dots)$$

• Open Pipe

$$f_n = \frac{n\nu}{2L} \text{ (where } n = 1, 2, 3 \dots \text{)}$$

• End Effects

$$L = \frac{n\lambda}{2} - 2 \times end \ effects$$

9 Fluids

Fluids at Rest

• Density

 $p = \frac{m}{V}$

Pressure

 $P = \frac{F}{A}$

• Pressure in Liquids

 $p = p_0 + pgd$

Gauge Pressure

 $p_g = p - 1atm$

• Barometers

 $p_{atmos} = pgh$

• Manometers

 $p_{atmos} = 1atm + pgh$

• Archimedes Principle

$$F_B = p_f V_f g$$

Fluids in Motion

- Equation of Continuity $v_1A_1 = v_2A_2$
- Bernoulli's Equation $p_2 + \frac{1}{2}pv_2^2 + pgy_2 = p_1 + \frac{1}{2}pv_1^2 + pgy_1$

10 Ray Optics

Refraction

$$n_1 sin \theta_1 = n_2 sin \theta_2$$
 (Snell's Law)

Total Internal Reflection

 $\theta_c = \sin^{-1} \frac{n_1}{n_2}$

Spherical Mirrors

• Focal Length

 $f = \frac{1}{2}r$

• Image Distance (thin lens equation)

 $\frac{1}{P} + \frac{1}{i} = \frac{1}{f}$

Image Formation

• Magnification

$$m = -rac{i}{p}$$

Thin Lens Equations

• Focal Length

$$\frac{1}{f} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

Focal Length (convex lens)

$$\frac{1}{f} = \frac{n-1}{r_1}$$

• Thin Lens Equation in i

$$i = \frac{Pf}{P - f}$$

• Thin lens equation in P

$$P = \frac{if}{i - f}$$

• Magnification in terms of P and f

$$m = \frac{f}{P - f}$$

• Magnification in terms of i and f

$$m = \frac{i - f}{f}$$

Thin Lens Images

Lens	Р	Real?	Orientation	m
Convex	<f< td=""><td>No</td><td></td><td>\uparrow</td></f<>	No		\uparrow
	= F	N/A	N/A	N/A
	> F	Yes	\downarrow	Ŷ
	= 2F	Yes	\downarrow	-
	> 2F	Yes	\downarrow	\downarrow
Concave	< F	No	↑	Ŷ
	= F	N/A	N/A	N/A
	> F	No	↑	Ŷ
	= 2F	No	↑ (-
	> 2F	No	↑ (\downarrow

Two Lens System

 $m_{tot} = m_1 m_2$

Optical Instruments

• Simple Magnifying Lens

 $m_{\theta} = \frac{25}{f}$

Compound Microscope

$$m = -\frac{s}{f_{ob}} \times \frac{25}{f_{ey}}$$

Refracting Telescope

$$m_{RT} = -\frac{f_{ob}}{f_{ey}}$$

11 Wave Optics

Path Difference

Constructive

 $\Delta r = m\lambda$ (where $m = 1, 2, 3 \dots$)

Destructive

$$\Delta r = \left(m + \frac{1}{2}\right)\lambda \text{ (where } m = 1, 2, 3...\text{)}$$

Interference of Light in Double Slit

• Angles for Bright Fringes

$$\theta_m = \frac{m\lambda}{d}$$

• Distances of Bright Fringes

$$y_m = \frac{Lm\lambda}{d}$$

• Angles for Dark Fringes

$$\theta'_m = \frac{\left(m + \frac{1}{2}\right)\lambda}{d}$$

• Distances of Dark Fringes

$$y'_m = \frac{\left(m + \frac{1}{2}\right)L\lambda}{d}$$

• Distances Between Fringes

$$\Delta y = \frac{\lambda L}{d}$$

Interference of Light in Single Slit

• Angles for Dark Fringes

$$\theta_p = \frac{p\lambda}{a}$$

• Distances for Dark Fringes

$$y_p = \frac{p\lambda l}{a}$$

• Width of Central Maximum

$$w = \frac{2\lambda l}{a}$$

Circular Aperture Diffraction

$$w = \frac{2.44\lambda L}{D}$$

Interferometer

$$d = \frac{N\lambda}{2}$$

12 Charge

Coulomb's Law

 $F = \frac{Kq_1q_2}{r^2}$

Electrical Field

• Vector Equation

 $\vec{E} = \frac{\vec{F}}{q}$

• Electrical Field of a Point Charge

 $\vec{E} = \frac{Kq}{r^2}$

Electrical Potential

 $U_{elec} = Vq$

13 Electrical Circuits

Current

• Definition

$$I = \frac{\Delta a}{\Delta t}$$

• Conservation of Charge

 $\Sigma I_{in} = \Sigma I_{out}$

Ohm's Law

 $I = \frac{\Delta V}{R}$

Power and Energy

• Power delivered by an emf

 $P_{emf} = IE$

• Power Dissipated by a Resistor

$$P_R = \frac{(\Delta V_r)^2}{R}$$

14 Units and Constants

Particle Kinematics in One Dimension

• $g = 9.8 m/s^2$

Particle Dynamics

• N = kg.m/s²

Work and Energy

- $J = Nm = kg.m^{2}/s$
- W = J/s
- 1Hp = 746W

Fluids

• Pa = N/m²

Charge

- $e^{-} = -1.60 \times 10^{-19} C$
- $K = 8.99 \times 10^9 \text{ Nm}^2/\text{C}^2$
- V = J/C

Electrical Circuits

- A = C/s
- Ω = V/A

