Summary of Financial Math Formulas: | Simple Interest: | | |---|--| | I = Prt | I = Interest Earned
P = Principal/Present Value | | A = P(1 + rt) | r = Annual Rate (decimal)
t = Time (years) | | Compound Interest: | | | If your loan/investment is compounded m times per year: | | | $A = P\left(1 + \frac{r}{m}\right)^{mt}$ | A = Future Value/Maturity Value P = Principal/Present Value | | If your loan/investment is compounded continuously: | r = Annual Rate (decimal) m = Number of Compounding Periods per Year t = Time (years) | | $A = Pe^{rt}$ | · ·····c (years) | | Effective Rate: | | | $r_e = \left(1 + \frac{r}{m}\right)^m - 1$ | Use this to compute the effective rate if your loan/investment is compounded m times per year. | | $r_e = e^r - 1$ | Use this to compute the effective rate if your loan/investment is compounded continuously. | | Future Value of Ordinary Annuities & Sinking Funds: | | | $S = R\left(\frac{(1+i)^n - 1}{i}\right)$ | The payment/deposit is at the END of the period. $S = \text{Future Value/Total amount accrued}$ $R = \text{Payment/Deposit made in each period}$ | | $R = S\left(\frac{i}{(1+i)^n - 1}\right)$ | i = rate per period (usually $i = \frac{r}{m}$) n = total number of times compounded ($n = mt$) | | Annuities Due: | | | $S = R\left(\frac{(1+i)^{n+1} - 1}{i}\right) - R$ | The payment/deposit is at the <u>BEGINNING</u> of the period | | Present Value of Ordinary Annuities & Amortization | n: | | $P = R\left(\frac{1 - (1+i)^{-n}}{i}\right)$ | The payment is made at the <u>END</u> of the period. P = Present Value R = Payment made in each period | | $R = P\left(\frac{i}{1 - (1+i)^{-n}}\right)$ | i = rate per period (usually $i = \frac{r}{m}$) n = total number of times compounded ($n = mt$) |